

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2022

MATHEMATICS P2 (DEAF)

MARKS: 150

TIME: 3 hours

This question paper has 14 pages, an information sheet and an answer book of 20 pages.

INSTRUCTIONS

Read the following instructions carefully.

- 1. This question paper has 10 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK.
- 3. Show ALL calculations, diagrams, graphs, etc. that you have used for your answers
- 4. Answers only will NOT get full marks.
- 5. Use an approved scientific calculator (non-programmable and non-graphical). We will say if it is different.
- 6. Round off answers to TWO decimal places. We will say if it is different.
- 7. Diagrams are NOT drawn to scale.
- 8. An information sheet with formulae is at the end of the question paper.
- 9. Write neatly.

(EC/NOVEMBER 2022)

QUESTION 1

The following table shows a sleeping pattern record, in hours, of ten Grade 11 learners:

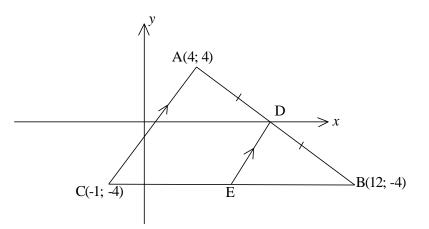
Lear	ner	1	2	3	4	5	6	7	8	9	10	
Num	ber of hours slept	7	8	8	5	6	3	4	8	7	10	
1.1	Calculate the mea correct to TWO de				rs slej	pt by	the lea	arners.	Give	the an	nswer	(1)
1.2	Write the five-number summary for this data .							(2)				
1.3	Draw a box-and-whisker diagram for this data set.							(2)				
1.4	Refer to your diagram and comment on the skewness of the data , and give a reason for your answer.						(2)					
1.5	Calculate the standard deviation for this data. Give your answer correct to TWO decimal places .						(2)					
1.6	A learner is conside deviation from the r			-					above o	one sta	ndard	(2) [11]

The different ages of teachers at a certain school in the Eastern Cape are given in the table below.

2.1 Complete the following table in your ANSWER BOOK.

AGE	FREQUENCY	CUMULATIVE FREQUENCY
25 <a≤30< td=""><td>2</td><td></td></a≤30<>	2	
30 <a≤35< td=""><td>8</td><td></td></a≤35<>	8	
35 <a≤40< td=""><td>4</td><td></td></a≤40<>	4	
40 <a≤45< td=""><td>5</td><td></td></a≤45<>	5	
45 <a≤50< td=""><td>11</td><td></td></a≤50<>	11	
50 <a≤55< td=""><td>19</td><td></td></a≤55<>	19	
55 <a≤60< td=""><td>20</td><td></td></a≤60<>	20	
60 <a≤65< td=""><td>6</td><td></td></a≤65<>	6	

(2)


(4)

(2)

- 2.2 **Draw** an **ogive** on the **set** of **axes** in your ANSWER BOOK to **represent** the **data** in the table.
- 2.3 Use your graph to find an estimate of the median age.
- 2.4 The school would like to give all teachers older than 57 a special present. Use your graph to find an estimate for the percentage of teachers older than 57 years of age. (2)

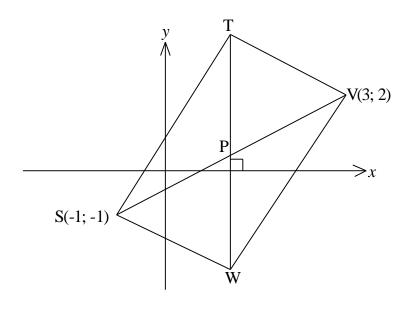
[10]

In the diagram below, the coordinates of A(4; 4), B(12; -4) and C(-1; -4) are given. AC || DE and CEB is a straight line. D is the midpoint of AB.

Determine(find out):

3.1	The length of AB. Give your answer correct to TWO decimal places	(2)
3.2	The coordinates of D, the midpoint of AB	(2)
3.3	The equation of line DE	(4)
3.4	The coordinates of E	(3) [11]

5


A(1; 5), B(4; 3) and C(0; -3) are vertices of the triangle given below.

4.1	Determine (calculate), using any method, the coordinates of D if ABCD is a parallelogram.	(2)
4.2	If the distance between C and F(8; p) is 12 units, determine _(calculate) the value(s) of p (to the nearest integer).	(5)
4.3	Determine (calculate) the size of $A\widehat{C}B$.	(5) [12]

QUESTION 5

In the diagram below, the diagonals of STVW are equal in length and bisect each other at P. Calculate the coordinates of T and W.

(6) [**6**]

- 6.1 If $-3\sin\beta 2 = 0$ and $\beta \in [0^\circ; 270^\circ]$, use a sketch in the correct quadrant to **determine**_(calculate) the value of: $1 + \tan^2 \beta$ without a calculator. (5)
- 6.2 If, $\cos 75^\circ = m$ express each of the following in terms of *m*, showing all your working:

$$6.2.1 \quad \cos^2 105^{\circ}$$
 (2)

- $6.2.2 \quad \sin 15^{\circ}$ (2)
- $6.2.3 \tan 15^{\circ}$ (2)
- 6.3 Given the expression:

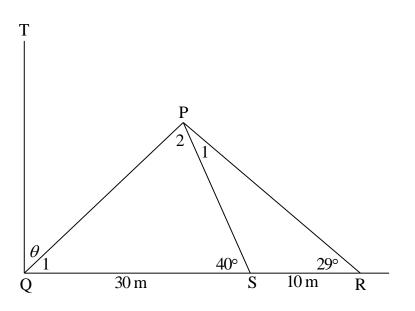
$$\frac{\cos(180^{\circ} - k).\sin(k - 90^{\circ}) - 1}{\tan^2(540^{\circ} + k).\sin(90^{\circ} + k).\cos(-k)}$$

- 6.3.1 Simplify the expression.
- 6.3.2 **Determine**_(calculate) the values of $k \in [0^{\circ}; 360^{\circ}]$ for which the expression is undefined. (6)
- 6.4 Prove that:

$$\frac{1+\sin\theta}{1-\sin\theta} - \frac{1-\sin\theta}{1+\sin\theta} = \frac{4\tan\theta}{\cos\theta}$$
(5)

6.5 **Determine**(find out) the general solution of:

$$6\sin^2\theta + \cos\theta = 4\tag{7}$$


6.6 If $p = \tan A + \sin A$ and $q = \tan A - \sin A$, prove that:

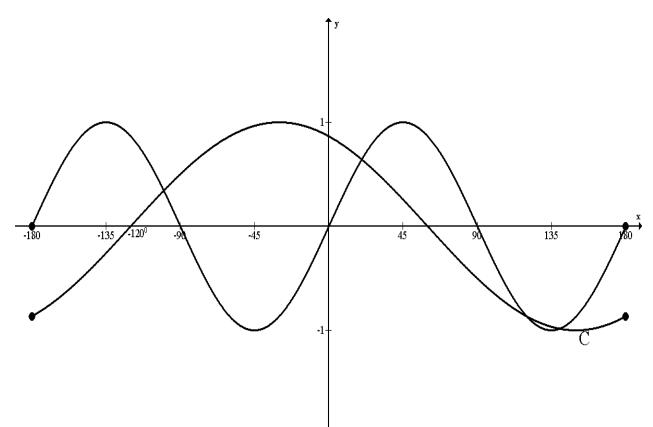
$$pq = \tan^2 A . \sin^2 A \tag{5}$$

(7)

Study the diagram below and answer the questions.

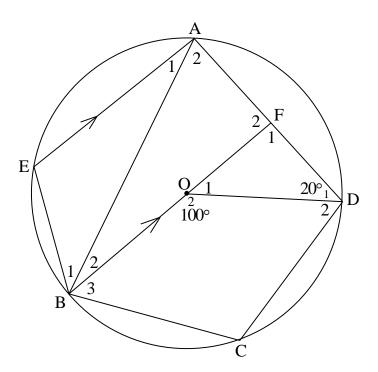
 $T\widehat{Q}R = 90^{\circ}, Q\widehat{S}P = 40^{\circ}, S\widehat{R}P = 29^{\circ}, QS = 30 \text{ m and } SR = 10 \text{ m.}$ It is also given that $T\widehat{Q}P = \theta$.

7.1 Give a reason why $\hat{P}_1 = 11^\circ$. (1)


7.2 **Calculate** the **length** of PS. (3)

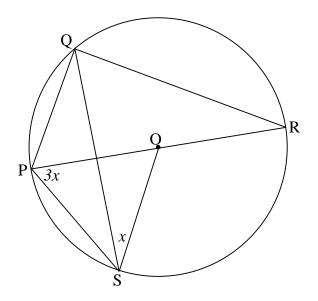
7.3 **Determine**(calculate) the value of θ , correct to the nearest degree. (5)

<u>8</u>


[9]

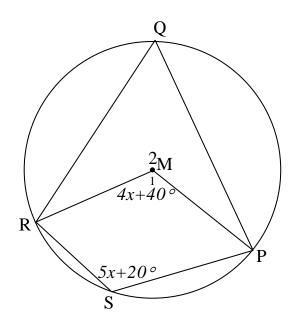
The sketch graphs of $f(x) = \sin a x$ and $g(x) = \cos (x - b)$ is given below.

8.1	Determine (calculate) the values of a and b .	(2)
8.2	Determine (find out) the coordinates of C, a turning point on $g(x)$.	(2)
8.3	For which values of x, where $x < 0$, is $f(x) \cdot g(x) \ge 0$?	(3)
8.4	Determine (calculate) the equation of $f(x)$ if the <i>y</i> -axis is moved 30° to the left.	(1) [8]


9.1 In the diagram below, O is the centre of circle AEBCD, with line BOF || EA. F lies on AD, $BOD = 100^{\circ}$ and $D_1 = 20^{\circ}$. The sizes of some of the angles are given in the table below. In each case, supply a valid reason.

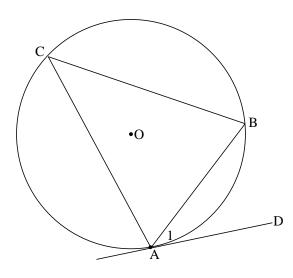
	STATEMENT	REASONS	
9.1.1	$\widehat{A}_2 = 50^{\circ}$		
9.1.2	$\widehat{O}_1 = 80^\circ$		
9.1.3	$\hat{F}_1 = 80^{\circ}$		
9.1.4	$\widehat{A}_1 = 30^\circ$		
9.1.5	$\widehat{B}_2 = 30^{\circ}$		(

(5)

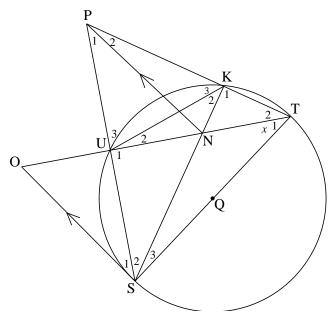

9.2 P, Q and R are points on the circumference of the circle with centre O. PR is the diameter of the circle. $Q\hat{S}O = x$ and $O\hat{P}S = 3x$.

Express each of the following in terms of *x*, giving a reason for your answer:

	-	[17]
9.2.5	QP̂R	(2)
9.2.4	PRQ	(2)
9.2.3	PŜQ	(3)
9.2.2	PQS	(3)
9.2.1	SQR	(2)


10.1 In the figure, P, Q, R and S are points on the circumference of a circle with centre M. It is given that $\widehat{M}_1 = 4x + 40^\circ$ and $\widehat{S} = 5x + 20^\circ$.

Calculate the size of \widehat{Q} with reasons.


(5)

10.2 In the diagram below, the circle with centre O passes through the points A, B and C. AD is a tangent to the circle at A.

Use the diagram to prove the theorem that states that $\widehat{A}_1 = \widehat{C}$. (6)

10.3 Refer to the diagram below. ST is a diameter of the circle. OS || PN, TO bisects STP. Let $\hat{T}_1 = x$.

		TOTAL:	150
10.3.3	Prove that POST is a cyclic quadrilateral.		(3) [25]
10.3.2	SO is a tangent to circle KUST.		(6)
10.3.1	Prove that PUNK is a cyclic quadrilateral.		(5)

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$
$T_n = a + (n-1)a$	$S_n = \frac{n}{2}$	(2a + (n-1)d)	
$T_n = ar^{n-1}$	$S_n = \frac{a(n)}{n}$	$\left(\frac{r^n-1}{r-1}\right)$; $r \neq 1$	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$
$F = \frac{x[(1+i)^n - 1]}{i}$	F	$P = \frac{x/(1-(1+i)^{-n})}{i}$	
$f'(x) = \lim_{h \to 0} \frac{f(x+x)}{x}$	$\frac{h)-f(x)}{h}$		
$d = \sqrt{(x_2 - x_1)^2} + $	$(y_2 - y_1)^2$	$\mathbf{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1}{2}\right)$	$\left(\frac{+y_2}{2}\right)$
y = mx + c	$y - y_1 = m(x - x)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^2 + (y-b)^2$	$=r^{2}$		
In $\triangle ABC$:			
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{a}{\sin B}$	$\frac{c}{aC} \qquad a^2 = b^2 + c^2$	$-2bc.\cos A$	$area \Delta ABC = \frac{1}{2}ab.\sin C$
$\sin(\alpha+\beta)=\sin\alpha$	$\cos\beta + \cos\alpha . \sin\beta$	$\sin(\alpha - \beta) = s$	$ in \alpha . \cos \beta - \cos \alpha . \sin \beta $
$\cos(\alpha+\beta)=\cos\alpha$	$\alpha \cos \beta - \sin \alpha \sin \beta$	$\cos(\alpha-\beta)=\cos(\alpha-\beta)$	$\cos \alpha . \cos \beta + \sin \alpha . \sin \beta$
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - 1 \\ 1 - 2\sin^2 2 \\ 2\cos^2 \alpha \end{cases}$	$\sin^2 \alpha$ $\frac{2}{\alpha}$ -1	$\sin 2\alpha = 2\sin \alpha$	α .cos α
$\overline{x} = \frac{\sum x}{n}$	ć	$\partial^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$	
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A) + I	P(B) - P(A and B)
$\hat{y} = a + bx$		$b = \frac{\sum (x - \overline{x})(x - \overline{x})}{\sum (x - \overline{x})}$	$\left(\frac{y-\overline{y}}{\overline{z}}\right)^2$

Copyright reserved