

ISEBE LEMFUNDO LEMPUMA KOLONI EASTERN CAPE EDUCATION DEPARTMENT OOS-KAAP ONDERWYSDEPARTEMENT

## NATIONAL SENIOR CERTIFICATE

## GRADE 12

DEAF LEARNERS
ENGINEERING GRAPHICS AND DESIGN P2

SEPTEMBER 2023
PREPARATORY EXAMINATION

## INSTRUCTIONS AND INFORMATION

1. The question paper consists of FOUR questions
2. Answer ALL the questions.

ALL drawings must be drawn to scale 1: 1, unless otherwise stated
ALL the questions must be answered on the answer sheets provided
5. ALL the answer sheets must be re-stapled in numerical sequence and handed in irrespective of whether the question was attempted or not. 6. Careful time management is essential in order to complete all the questions. Print your name in the block provided on every ANSWER SHEET. Print your name in the block provided on every AN
9. Any details or dimensions not given must be estimated in good proportion.
10. ALL drawings are in third angle orthographic projection, unless otherwise stated.



| COMPLETE THE FOLLOWING: |
| :---: |
| NAME |
| NAME |
| EXAMINATION CENTRE |
| SCHOOL |

MARKS: 200
TIME: 3 hours
This question paper consists of 6 pages.
Copyright reserved


## QUESTION 2: LOCI (CAM)

Given:

- The details of the camshaft and a roller-ended follower in
the starting position.
- Reference point C on the answer sheet

Specifications:

- Camshaft = Ø20 mm.
- The minimum distance from the cam profile to the center
of the camshaft $=15 \mathrm{~mm}$

Motion:
Motion
The cam imparts the following motion to the roller-followe

- It rises 20 mm with uniform motion over the first $45^{\circ}$
- There is a dwell period for the next 45
- It rises a further 40 mm with uniform acceleration and

It rises a further 40 mm with
retardation over the next $90^{\circ}$

- It returns to its original position with simple harmonic motion over the remainder of the rotation

Instructions:

- Draw to scale 1:1, the given camshaft and the roller

Draw to sc
follower.
follower.

- Draw to a rotation of rotation on the cam pro
a displacement scale of $1: 1$, the displacement graph for the required motion.
- Project and draw the cam profile from the displacement graph
- Label the displacement graph and the scale
- Show ALL construction and projection.


| ASSESSMENT CRITERIA |  |  |  |
| :---: | :--- | :---: | :---: |
| 1 | GIVEN + MINIMUM <br> IISTANCE + CENTRE <br> LINES | 5 |  |
| 2 | GRAPH CONSTRUCTION | $5 \frac{1}{2}$ |  |
| 3 | DISPLACEMENT GRAPH | $9 \frac{1}{2}$ |  |
| 4 | CAM CONSTRUCTION | 5 |  |
| 5 | CAM + CURVE QUALITY | 13 |  |
| PENALTY (-) |  |  |  |
| TOTAL |  |  |  |
| $\mathbf{y y y y y y}$ | $\mathbf{3 8}$ |  |  |

## QUESTION 3: ISOMETRIC

## Given:

- Three views of a SUPPORT BRACKET in third angle orthographic projection
- Cutting plane A-A as seen in the top view.
- Starting point S .


## nstructions

Draw, to scale 1:1, a sectional isometric view of the SUPPORT BRACKET

- Make point $S$ the lowest point of the drawing.
- Show ALL necessary construction
- NO hidden detail is required
$\qquad$ [43]




| ASSESSMENT CRITERIA |  |  |  |
| :---: | :--- | :---: | :---: |
| 1 | CONSTR' + PLACEMENT | 2 |  |
| 2 | BASE | $11 \frac{1}{2}$ |  |
| 3 | TOWER + HEXAGON + <br> CIRCLE | 15 |  |
| 4 | SECTION A-A | $14 \frac{1}{2}$ |  |
| NOTAL |  |  |  |
| NAME 43 |  |  |  |
| NAME |  |  |  |



## QUESTION 4: MECHANICAL ASSEMBLY

## Given

- Orthographic views of each of the parts of the safety valve
- The exploded isometric drawing of the parts of a safety valve assembly, showing the position of each part relative to the others.
- Starting point $S$ on the answer sheet, page 6 .


## Instructions

- Answer this question on page 6
- Draw, to scale 1:1 and in third angle orthographic projection, the following views of the assembled parts of the safety valve 4.1 ONLY the front half of the top view, by applying the convention of symmetry
42 The sectional front view, on cutting plane A-A, as seen from the direction of the arrow shown on the exploded isometric drawing. The cutting plane is shown on the top view of the housing (part 9 )

NOTE:

1. Starting point $S$ is indicated on the front views of the housing (part 9) and the disc (part 8)
2. Show THREE faces of the M12 nut in the sectional front view.
3. Show ALL construction.
4. NO hidden detail is required
5. NO hidden detail is required.
6. Make use of a partial section to indicate the screw at the
bottom of the spindle.
7. All drawings must comply with the guidelines contained in SANS 10111.

## Add the following features on the drawing

- The cutting plane A-A in the TOP VIEW
- The convention symbol to indicate symmetry in the TOP VIEW.

| TITLE: |  |  |
| :---: | :---: | :---: |
| QUALIT | -VALVE |  |
| ALL DIMENSIONS ARE IN MILLIMETRES. |  | $\text { (9) }-$ |
| ALL UNSPECIFIED RADII ARE R5. |  |  |
| PARTS LIST |  |  |
| PART | MATERIAL | QUANTITY |
| 1. CAP | CARbon steel | 1 |
| 2. PIN | mild steel | 1 |
| 3. LEVER | MILD STEEL | 1 |
| 4. M12 NUT | tool steel | 1 |
| 5. SPRING SEAT | MILD STEEL | 1 |
| 6. SPRING | STAINLESS STEEL | 1 |
| 7. SPINDLE | Stainless steel | 1 |
| 8. DISC | BRONZE | 1 |
| 9. HOUSING | CAST IRON | 15 |



