

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2023

MATHEMATICS P1 (DEAF)

MARKS: 150

TIME: 3 hours

This question paper has 12 pages, including an information sheet.

INSTRUCTIONS AND INFORMATION

Read the instructions. Answer the questions.

- 1. This question paper has **ELEVEN questions**. **Answer ALL** the **questions**.
- 2. Clearly show ALL calculations, diagrams, graphs that you used in your answers.
- 3. You may use a prescribed calculator. Some questions will tell you NOT to use a calculator.
- 4. You will **NOT** always **get marks** for **answer only**.
- 5. **Round off** answers to **TWO decimal places**. **Some questions** will **tell** you **how** to **round off**.
- 6. Diagrams are NOT drawn to scale.Some questions will tell you to use the scale.
- 7. **Number** the **answers** the **same** as the numbers on the **question paper**.
- 8. An information sheet with formulae is at the end of the question paper.
- 9. Write **neatly**. Make sure your **work** is **easy** to **read**.

2

1.1 **Solve** for *x*:

1.1.1	$x^2 + x - 30 = 0$	(3	5)

1.1.2
$$x(2x-6) = -3$$
 (correct to **TWO decimal places**) (4)

$$1.1.3 \qquad x^2 - 2x + 1 > 0 \tag{3}$$

1.1.4
$$2x - 1 = \sqrt{4 - 5x}$$
 (4)

1.2 Solve for x and y simultaneously_{(at the same time}):

$$y-2x = -1$$
 and $2y^2 + 4xy = 6x^2$ (6)

1.3 Given the quadratic equation: 2x² - px + 1 = 0, x ∈ ℝ.
Determine the possible value(s) of p, such that the equation has two unequal real roots. (5)

2.1 Given the arithmetic sequence. The tenth and the seventeenth terms of an arithmetic sequence are 21 and 49 respectively.
2.1.1 Determine the common difference of the sequence. (3)

2.1.2 **Calculate**:
$$T_1 + T_{18}$$
 (3)

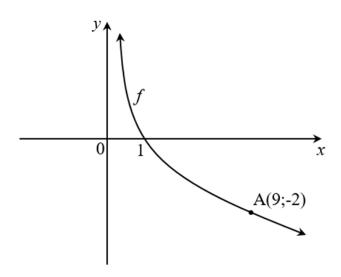
2.2 Given:
$$\sum_{n=1}^{m} (4n-19) = 1189$$

2.2.1	Write down the first three terms of the series.	(1)
-------	---	-----

- 2.2.2 Calculate the value of m. (4)
- 2.3 -78;-76;-72;-66; ... is a quadratic number pattern.
 - 2.3.1 Write down the next two terms of the number pattern. (1)
 - 2.3.2 **Determine** the n^{th} term of the **number pattern** in the **form**, $T_n = an^2 + bn + c.$ (4)
 - 2.3.3 A constant k is added to T_n such that all the terms of the quadratic number pattern become positive. Determine the value(s) of k. (2) [18]

QUESTION 3

- 3.1 The first term of a geometric sequence is 81 and the common ratio is r. The sum of the first and third terms of the same geometric sequence is 117. Calculate the value of r. (4)
- 3.2 Given the convergent geometric series: $3^x + 9^x + 27^x + 81^x + ...$
 - 3.2.1 Write down the common ratio in terms of x. (1)
 - 3.2.2 **Calculate** the value of x, if $S_{\infty} = \frac{1}{2}$. (3)


[8]

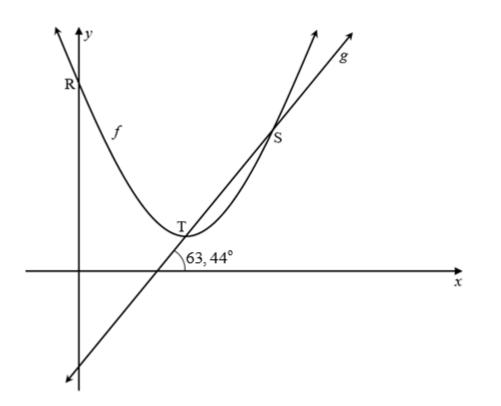
4

Given: $f(x) = \frac{2}{x-5} + 3$

4.1	Write down the equations of the asymptotes of <i>f</i> .	(2)
4.2	Write down the range of <i>f</i> .	(1)
4.3	Determine the coordinates of the <i>x</i> - and <i>y</i> -intercepts of <i>f</i> .	(3)
4.4	Sketch the graph of f , clearly showing all asymptotes and intercepts with the axes.	(4)
4.5	Describe the transformation that the graph of <i>f</i> has to undergo to form the graph of <i>h</i> , where $h(x) = -\frac{2}{x-5} - 5$.	(3) [13]

The **diagram** below shows the graph of $f(x) = \log_b x$, where b is a constant. f passes through the point A(9; -2).

5.1 **Show** that
$$b = \frac{1}{3}$$
. (2)


5.2 **Determine** the equation of
$$f^{-1}$$
, the inverse of f , in the form $y = ...$ (2)

5.3 For which values of x is
$$f(x) \ge 0$$
? (2)

5.4 Write down the equation of the asymptote of g, if
$$g(x) = f^{-1}(x+1)$$
. (2)

[8]

The **diagram shows** the **graphs** of $f(x) = x^2 - 6x + 11$ and g(x) = ax + b. The **graphs** of f and g **intersect** at S and T, where T the **turning point** of f. The **angle** of **inclination** of g is 63,44°.

6.1	Calculate the coordinates of T.	
6.2	Determine the equation of g in the form $y = mx + c$.	
6.3	Hence, or otherwise determine the coordinates of S.	
6.4	Determine the values of:	
	6.4.1 x, for which $f(x) \le 6$	(2)
	6.4.2 k, for which $f(x) + k$ will have real roots	(2)

[15]

- 7.1 Lufezo deposited R97 000 into an account that offered interest at 9,1% p.a. compounded quarterly.
 Calculate how many years it took for his investment to reach R166 433. (4)
- 7.2 On 1 January 2018 a school bought a new bus for R482 000.
 On that day they also started a sinking fund to make provision for a new bus in 5 years' time.
 - 7.2.1 Over the next 5 years the value of the bus depreciated at 14,7% p.a. on the reducing-balance method.
 Calculate the trade-in value of the bus after 5 years. (2)
 - 7.2.2 The price of these buses increases by 8,1% per year.
 Calculate the price of a new bus on 1 January 2023, i.e. after 5 years. (2)
 - 7.2.3 The **bank offered** an **interest rate** of **7,3% p.a., compounded monthly**, for the **sinking fund**.

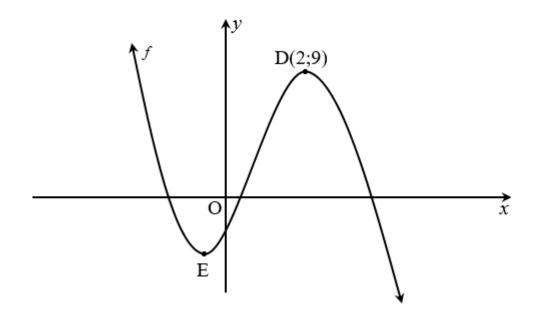
The first payment, x rands, was made in the fund on 1 January 2018 and thereafter the same amount was deposited on the first day of every month.

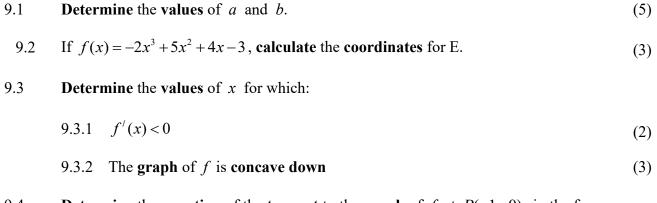
The last payment was made on 1 December 2022.

On **31 December 2022** the **school bought** a **new bus** and used the **trade-in value** of the **old bus** as a **deposit**.

Calculate the monthly payment into the sinking fund.	(6)
--	-----

[14]


8.1 **Determine**
$$f'(x)$$
 from first principles if $f(x) = 1 - x^2$. (5)

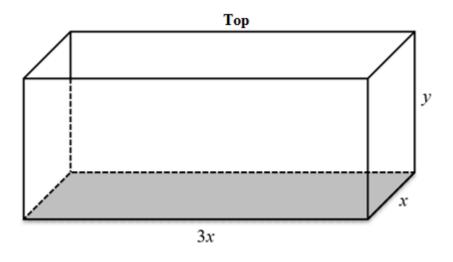

8.2 **Determine**:

$$8.2.1 \quad D_x \left(x - \frac{1}{x} \right)^2 \tag{3}$$

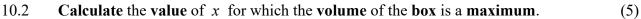
8.2.2
$$\frac{dy}{dx}$$
 if $y = \frac{x^5}{10} - \frac{2}{\sqrt{x}}$ (3)

The **diagram** shows the **graph** of $f(x) = -2x^3 + ax^2 + bx - 3$. D(2; 9). E are the **turning points** of f.

9.4 **Determine** the equation of the tangent to the graph of f at P(-1; 0), in the form y = mx + c. (4)


[17]

[11]


The wooden box in the diagram is a rectangular prism and it is open at the top.

The dimensions of the base are 3x metres by x metres and the height is y metres.

The total surface area is 147 m^2 .

10.1 Show that
$$y = \frac{147 - 3x^2}{8x}$$
. (2)

[7]

11.1 A survey was carried out among 210 people.
 It is to determine whether they prefer_(choose) watching rugby or soccer on TV.
 The results are shown in the contingency table below.

	WATCH SOCCER	WATCH RUGBY	TOTAL
Female	72	a	120
Male	54	36	90
Total	b	84	210

- 11.1.1 **Determine** the values of *a* and *b*.
- 11.1.2 Give the probability that an individual chosen at random is a female preferring to watch soccer. (2)
- 11.1.3 Are the events 'being male' and 'watch rugby' independent? Justify your answer with calculations.
- 11.2 The **password** of a **computer** has 3 letters and 3 digits, **in that order**. **All** 10 digits and 26 letters of the **alphabet may be used**, **without repetition**.

Example:

A B	C 1	2	3
-----	-----	---	---

- 11.2.1
 How many different passwords can be formed out of the 10 digits and 26 letters?
 (2)

 11.2.2
 Calculate the probability that the first letter of a password formed is a vowel and the last digit of the password is a factor of 9.
 (4)

 [14]
 - **TOTAL: 150**

(2)

(4)

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$				
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$	
$T_n = a + (n-1)d$		$\mathbf{S}_n = \frac{n}{2} \left(2a + (n-1)d \right)$		
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1} ; $	<i>r</i> ≠ 1	$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$	
$F = \frac{x\left[\left(1+i\right)^n - 1\right]}{i}$		$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - h}{h}$	-f(x)			
$d = (x_2 - x_1)^2 + (y_2 -$	$(-y_1)^2$	$\mathbf{M}\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$		
y = mx + c	$y-y_1=m(x-x_1)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$	
$(x-a)^2 + (y-b)^2 = b^2$	~ ²			
511	$\frac{b}{A} = \frac{b}{\sin B} = \frac{c}{\sin C}$			
	$=b^2+c^2-2bc.\cos A$			
area	$a \ \Delta ABC = \frac{1}{2}ab.\sin C$			
$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$		$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$		
$\cos(\alpha+\beta)=\cos\alpha.\cos\beta$	$s\beta - \sin \alpha . \sin \beta$	$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$		
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$	² α	$\sin 2\alpha = 2\sin \alpha . \cos \alpha$	χ	
$\overline{x} = \frac{\sum x}{n}$		$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$		
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A) + P	P(B) - P(A and B)	

 $b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$

 $\hat{y} = a + bx$

Copyright reserved