

Province of the **EASTERN CAPE** EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2012

MECHANICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 12 pages.

QUESTION 1 is to be answered on this answer sheet.

VRAAG 1 moet op hierdie antwoordblad beantwoord word.

NAME/NAAM:

ANSWER SHEET/ANTWOORDBLAD			
QUESTION/VRAAG	1	(MULTIPLE CHOICE QUESTIONS)/(MEERVOUDIGEKEUSE-VRAE)	

1.1	Α			
1.2				D
1.3		В		
1.4	Α			
1.5	Α			
1.6			С	
1.7	Α			
1.8				D
1.9		В		
1.10	Α			
1.11				D
1.12			С	
1.13				D
1.14	Α			
1.15		В		
1.16	Α			
1.17			С	
1.18			С	
1.19			С	
1.20				D
	-	·	·	•

TOTAL	
-------	--

Tear off this page and submit with answer book.

QUESTION 2 FORCES AND SYSTEMS AND CONTROL

(LEARNING OUTCOME 3: ASSESSMENT STANDARDS 6 AND 8)

2.1 2.1.1 Area =
$$\frac{\pi \times D^2}{4} \sqrt{}$$

= $\frac{\pi \times 0.024^2}{4} \sqrt{}$
Stress = $\frac{force}{area}$
= $\frac{60 \times 10^3}{0.000452389} \sqrt{}$
= 132629119,2 Pa
= 13263 MPa $\sqrt{}$ (5)
2.1.2 Strain = $\frac{change in tength}{original tength} \sqrt{}$
= $0.001037735 \sqrt{}$ (3)
2.1.3 Young modules = $\frac{stress}{strain} \sqrt{}$
= $\frac{132.63 \times 10^6}{0.001037735} \sqrt{}$ (3)
2.2.2 Stress = $\frac{force}{area} \sqrt{}$
Area = $\frac{380 \times 10^3}{420 \times 10^6} \sqrt{}$
= $0.00004761 \text{ m}^2 \sqrt{}$
BUT:
Area = $\pi \times d \times t \sqrt{}$
 $0.000904761 = \pi \times d \times t \sqrt{}$
 $0.000904761 = \pi \times d \times t \sqrt{}$
 $0.000904761 = \pi \times d \times t \sqrt{}$
 $D = \frac{0.020571047 \text{ m}}{\pi \times 0.014} \sqrt{}$
Equation = 0.020571047 m
D = $20.57 \text{ mm} \sqrt{}$
Say diameter of hole is 21 mm (6)

(2)

- 2.3 Strain is directly proportional to the stress it causes, provided the limit of proportionality is not exceeded. $\sqrt{\sqrt{}}$
- $=\frac{force}{arcc}$ 2.4 Stress = stress x area $\sqrt{}$ force = $(300 \times 10^3) \times (\frac{200}{1000} \times \frac{5}{1000}) \sqrt{1000}$ = 300N that is $T_1 \sqrt{}$ $\frac{T_1}{T_2} = \frac{2.5}{1} \quad \sqrt{}$ $T_2 = \frac{300}{2.5} \sqrt{100}$ T_2 = 120N $\sqrt{}$ T_{e}^{-} = 300 – 120 = 180 N $\sqrt{}$ Torque: T $T = T_e x$ radius = $180 \times (\frac{1000}{2})\sqrt{} = 180 \times 0.5 \text{ m}$ = 90 N.m $\sqrt{}$ Power: P = $2 \times \pi \times \frac{N}{60} \times T$ OR P = $\pi \times \frac{N}{60} \times T_e \times D$ = $2 \times \pi \times \frac{200}{60} \times 90$ $\sqrt{}$ = $\pi \times \frac{200}{60} \times 180 \times 1$ = 1884,96 watt = 1884,96= 1,88 kW $\sqrt{}$ = 1,88 kW (11) $\frac{F}{area A} = \frac{load}{area B}$ $\frac{F}{0,015} = \frac{800}{0,16} \sqrt{F}$ $F = \frac{800}{0,16} \times 0,015 \sqrt{F}$ $= 75 N \sqrt{F}$ 2.5 2.5.1 Force on piston A: (3)

2.5.2 area_A × stroke length = area_B × stroke length
0,015 x "X" = 0,16 x 10
$$\sqrt{}$$

"X" = $\frac{0,16 \times 10}{0,015} \sqrt{}$
= 106,7 mm $\sqrt{}$ (3)

2.5.3 No effect because the pressure in the system is unchanged $\sqrt{}$ Piston A and B area did not change therefor no effect. $\sqrt{}$ (2)

2.6 2.6.1 Mechanical advantage = $\frac{load}{effort}$ $\therefore \quad \text{``F''} \quad effort = \frac{1,57 \times 10^3}{4} \sqrt{}$ $= 392,5 \text{ N} \sqrt{}$ 2.6.2 Velocity ratio = $\frac{2D}{d_2 - d_1}$ $= \frac{2 \times 210}{160 - 130} \sqrt{}$ = 14 : 1 $\sqrt{}$ (2)

- 2.7 2.7.1 Consider a three start or even a four start screw thread $\sqrt{}$ A three start will move - 3 x 10 = 30 mm A four start will move - 4 x 10 = 40 mm $\sqrt{}$ **COMPARED TO** Two start will move - 2 x 10 = 20 mm (2)
 - 2.7.2 Lead = pitch x number of starts = 10×2 = 20 mm

EFFECTIVE DIA(D_E) = BD - (0,5 X PITCH)
= 55 - (0,5 x 10)
= 50 mm
$$\sqrt{$$

Helix angle TAN
$$\theta = \frac{lead}{\pi \times D_e}$$

= $\frac{20}{\pi \times 50} \sqrt{}$
 $\Theta = 7,26^{\circ} \sqrt{}$ (3)

2.8 "P" power
$$=\frac{2 \times \pi \times N \times T}{60}$$
 OR $T = \mu WnR$
43,982 x 10³ $=\frac{2 \times \pi \times 3000 \times T}{60} \sqrt{} = 0,35 \times 2,5 \times 10^3 \times 2 \times \frac{0,16}{2}$
 $T = \frac{43,982 \times 10^3 \times 60}{2 \times \pi \times 3000} \sqrt{} = 140 \text{ N.m}$
 $= 139,999$
Say= 140 N.m $\sqrt{}$ (3)
[50]

5

QUESTION 3 TOOLS AND EQUIPMENT

(LEARNING OUTCOME 3: ASSESSMENT STANDARD 2)

3.1	1. 2. 3. 4.	Scal India Upp Low	le $$ cator $$ er platform $$ er platform $$		
	5.	Com	ipressing lever v		(5)
3.2	3.2	.1	Determines the amount of CO being produced $\sqrt{~~}$ OR Analyse the exhaust gases		(1)
	3.2	.2	To measure the pressure created in one cylinder \checkmark		(1)
	3.2	.3	To check whether the engine leaks gases from one cyl during the compression stokes $\boldsymbol{\sqrt}$	inder	(1)
3.3	1. 2. 3. 4. 5. 6.	Shie Wire Con Wele Gas Pow	elding gas cylinder $\sqrt{2}$ e-feed unit $\sqrt{2}$ tinuous wire reel $\sqrt{2}$ ding gun $\sqrt{2}$ flow meter $\sqrt{2}$		(6)
3.4	1. 2. 3. 4. 5.	Che wate Liste that Air e Che Air e gasł	ck radiator for air bubbles - Air from cylinder is leaking in er jackets $$ en for air coming out of the carburettor/air cleaner - this i inlet valve is leaking $$ escaping through exhaust pipe - exhaust valve leaking $$ ck for air escaping through the oil filler cap - worn or bro escaping through adjacent cylinders - cracked or blown h	nto the ndicates ken rings nead (Any 3)	(3)
3.5	• • • • •	Kee Kee Use Do r Use Rem	p the meter dry $$ p it away from dust and dirt $$ and store it in normal temperature environments $$ not drop it only charged cells of correct size nove cells when not in use	(Any 3)	(3)

[20]

	-
4	
	-

QUESTION 4 MATERIALS

(LEARNING OUTCOME 3: ASSESSMENT STANDARD 3)

- 4.1 1. Create a harder, tougher metal $\sqrt{}$
 - 2. Producing a stronger metal $\sqrt{}$
 - 3. Increase the resistance to corrosion and rust $\sqrt{}$
 - 4. Changing the colour of the metal $\sqrt{}$
 - 5. Increase electrical resistance $\sqrt{}$
 - 6. Improve ductility and elasticity
 - 7. Improving casting properties
 - 8. Strengthening the metal against wear and tear
 - 9. Lowering the cost of the metal
 - 10 Lowering the melting point to below the mean of the metal components (Any 5) (5)
- 4.2 4.2.1 Copper + zinc $\sqrt{\sqrt{}}$
 - 4.2.2 A hard alloy able to resist wear $\sqrt{}$
 - Very good resistance to corrosion $\sqrt{}$
 - Easily machined
 - Lead acts as a lubricating agent (Any 2)

4.3		Properties	Uses	
	4.3.1	Very light, ductile, malleable, soft, resist corrosion conduct electricity and non-magnetic√	Transmission lines, electric cables, electric conductors, cooking utensils, gear crank cases, gear boxes, marine, aeroplane, motor vehicle, roofing, gutters, doors, etc. $$	
		(Any 1)	(Any 1)	(2
	4.3.2	 Work-hardens, ductility, malleability, electrical- and heat-conductivity, resist corrosion √ 	 Electrical cables, switchboard parts, electrical bolts and nuts, water supply tubing and roofing √ 	
		(Any 1)	(Any 1)	(2
	4.3.3	 Very soft, malleable, ductile and tough, bends and stretches easily √ 	 Soft solder, bullets, lead cables, plumbing, sinkers etc. √ 	-
		(Any 1)	(Any 1)	(2

4.4 Salt and oil $\sqrt{\sqrt{}}$

- 4.5 Water resistant $\sqrt{}$
 - Oil resistant $\sqrt{}$
 - Heat resistant $\sqrt{}$
 - Corrosion resistant
 - Needs no lubrication

(Any 3) (3) **[20]**

(2)

7

(2)

(2)

QUESTION 5 SAFETY, TERMINOLOGY AND JOINING METHODS

(LEARNING OUTCOME 3: ASSESSMENT STANDARDS 1, 4 AND 5)

- 5.1 1. Never use damaged equipment $\sqrt{}$
 - 2. No oil or grease close to oxygen equipment $\sqrt{}$
 - 3. Never use oxygen to blow dirt or dust off clothing $\sqrt{}$
 - 4. Never use matches or gas lighter to ignite the flame $\sqrt{}$
 - 5. Sniff cylinders before assembling the regulators
 - 6. Always make sure regulators have their adjusting screws released and purge them
 - 7. Wear proper welding goggles, gloves and clothing
 - 8. Make sure to have a fire extinguisher handy
 - 9. Always use the proper regulator for the gas in the cylinder
 - 10. Always use cylinders in the upright position
 - 11. Always keep the acetylene cylinder valve wrench on the cylinder
 - 12. Cylinder valve a maximum of one and a half turns open
 - 13. Do not carry lighters or matches or other flammable objects in your pocket when welding
 - 14. Take note of the area when welding
 - 15. Be careful not to let welding hoses come in contact with the torch, flame or sparks from cutting (Any 3)

(3)

- 5.2 1. Wear safety goggles $\sqrt{}$
 - 2. Make sure that the test piece is properly mounted $\sqrt{}$
 - 3. Do not exert too much stress in the beginning $\sqrt{}$
 - 4. Only use apparatus if in good order
 - Make sure that machine stands firm 5.
 - Make sure that all bolts and nuts on the apparatus are tight 6.
 - Wear the correct personal protective safety wear 7.
 - Before testing commences, make sure that the safety shield is in 8. place
 - Work with care with the dial indicator, it can easily be damaged 9.

(Any 3) (3)

- Test only in well-ventilated area $\sqrt{}$ 5.3 1.
 - Make certain that the exhaust probe is fitted correctly to the exhaust 2. pipe √
 - Do not run the engine for too long $\sqrt{}$ 3.
 - 4. Make sure that the inlet hose is not stepped on or restricted $\sqrt{}$
 - Make sure that the hose connections are airtight 5.
 - Check the valve on the condenser and be in the horizontal closed 6. position
 - 7. Check for leaks in the exhaust system, manifold or vacuum system
 - 8. Clean the condenser and hose by blowing it with an air line
 - 9. Drain the condenser after each test by means of the valve
 - 10. Replace filter if it is light grey
 - 11 Change fuel filter on condenser stand regularly
 - 12. Make sure that the terminals are clean

(Any 4) (4)

MECHANICAL TECHNOLOGY (Memo)

5.4	 It ke It div It pro It pro 	eps the work vides the circ ovides a turn ovides mover	piece in position dur umference of the wor ing action to work pie ment to the bed wher	ing machining √ k piece in equal divisio ce when doing helical n milling a rack	ns √ milling √ (Any 3) (3)
5.5	Angle 16 Angle = = = 20 holes	b°30' change $= \frac{Angle}{540'}$ $= \frac{990'}{540'} \sqrt{15}$ $= 1\frac{5}{6} \times \frac{4}{4} \sqrt{15}$ $= 0 \text{ ne full turn}$ on the 24 ho	e (16 x 60') + 30' = 99 OR of the index crank ar ole circle $$	0' Angle = $\frac{16\frac{1}{2}}{9}$ = $\frac{33}{2} \times \frac{1}{9}$ = $1\frac{5}{6} \times \frac{4}{4}$ and = one full the index crank arr holes on the 24 ho	ll turn of 1d 20 ble circle (3)
5.6	RapDiffeNorrAnge	id indexing √ erential index nal indexing/ ular indexing	ing √ Simple indexing√		(3)
5.7	5.7.1	Addendum	= module √ = 2,0 mm √		(2)
	5.7.2	Dedendum	= 1,157 x m = 1,157 x 2 √ = 2,314 mm √		(2)
	5.7.3	Cutting dept	th = 2,157 x m OF = 2,157 x 2 $$ = 4,314 mm $$	R cutting depth = add = 2 + = 4,3	+ ded 2,314 14 mm (2)
	5.7.4	Circle pitch	$= \pi \times m$ = $\pi \times 2 $ = 6,28 mm $$		(2)
	5.7.5	Clearance	= 0,157 x m = 0,157 x 2√ = 0,314 mm √		(2)
	5.7.6	PCD	$= \frac{cp \times T}{\pi}$ $= \frac{6,28318 \times 40}{\pi} \qquad \sqrt{$ $= 80 \text{ mm} \qquad $	DR PCD = T x m = 40 x 2 = 80 m	n 2 m (2)
5.8	Cha	nce of teeth I	being sheared off is lo	ess $$	

- Less cost $\sqrt{}$ •
- Less power is required to drive the cutter $\sqrt{}$ Can use high arbour speed •
- •
- Less vibration on the arbour •

(3)

(SEPTEMBER 2012)

 $N = \frac{V}{\pi \times D} \sqrt{1}$ 5.9 r/min of cutter: N $= \frac{28}{\pi \times \frac{65}{1000}} \sqrt{1000}$ = 137,1181048 r/min √ $= f_1 \mathbf{X} \mathbf{T} \mathbf{X} \mathbf{N} \mathbf{V}$ Feed speed (f) = 0,06 x 16 x 137,1181048 √ = 131,63 mm/min √ (6) 5.10 5.10.1 CAUSES CORRECTION Speed too fast $\sqrt{}$ Weld slowly $\sqrt{}$ Select correct electrode Electrode too large $\sqrt{}$ Current too low Set current up Leave enough space at bottom of the weld (3) CAUSES CORRECTION 5.10.2 Speed too fast $\sqrt{}$ Weld slowly $\sqrt{}$ Current too low $\sqrt{}$ Select correct current Faulty electrode Change the electrode Impaired base metal to a short Check for impurities in metal Hold a longer arc (3) arc 5.11 • Cut a nick on the length of the joint approximately 6,5 mm deep $\sqrt{}$ • Place the test piece on two steel supports $\sqrt{}$ • Use a sledge hammer to break the welded joint $\sqrt{}$

• Examine the broken surface of the weld for any possible defects $\sqrt{}$ (4)

[ŠÓ]

<u>10</u>

(SEPTE	MBER 2012)	MECHANICAL TECHNOLOGY (Memo)	11
QUE	STION 6	TURBINE AND MAINTENANCE	
(LE/	ARNING C	OUTCOME 3: ASSESSMENT STANDARD 7 AND 9)	
6.1	 Lub Ope Oil/ Ince Fau Fau Lub Mis 	pricating insufficient $$ erating temperature too excessive $$ grease supply has foreign materials $$ prrect lubricant $$ Ity design pricant contaminated with water alignment (Any 4)	(4)
6.2	6.2.1	 V-belts are used over short distances √ V-belts come in standard size for immediate replacement √ Silent in operation √ Requires very little maintenance Is able to absorb shock loads Operate at low bearing pressure A number of v-belts can be used for heavy duty application In a multi v-belt drive if one belt breaks the machine can still run on the remaining belts (Any 3) 	(3)
	6.2.2	1. V-belt tension is too slack $$ 2. Oil on v-belt $$ 3. Grease on v-belt $$ 4. V-belt worn out/damaged sides	(3)
6.3	6.3.1	 Make sure engine is at working temperature √ Place container under sump. Remove oil filler cap. √ Unscrew sump plug and drain oil into container. √ Use a filter spanner and remove oil filter. √ Allow enough time for oil to drain. √ Apply sheen of oil to rubber seal of oil filter and mount with hand √ 	

- 7. Screw sump plug fitted with new copper washer to sump. $\sqrt{}$
- 8. Refill engine with oil according to specifications and replace oil filler cap. $\sqrt{}$ (8)
- 6.3.2 (a) <u>SAE</u> "society of automotive engineers" $\sqrt{}$ (1)
 - (b) <u>20</u> A thinner oil for when the engine is still cold $\sqrt{}$ (1)
 - (c) <u>W</u> Indicates winter/colder conditions $\sqrt{}$ (1)
 - (d) $\underline{50}$ A thicker oil for when the engine is at optimal working temperature $\sqrt{}$ (1)

12	MECHANICAL TECHNOLOGY (Memo) (SEPTEMBE	ER 2012)
6.4	 The work piece and cutting tool are kept cool √ The life of the cutting tool is prolonged √ A better finish is imparted to the surface √ Cuttings are washed away √ The machine is protected because the cutting process is eased √ The machine operator is protected from metal chips Productivity is increased because of the cutting process is faster The soluble oil prevents corrosion It lubricates the machine 	(5)
6.5	6.5.1 Roots-blower $$	(1)
	6.5.2 Vane-blower $$	(1)
	653 Centrifugal-blower √	(1)
6.6	1. Inlet $$ 2. Outlet $$ 3. Rotor $$ 4. Casing $$	(4)
6.7	Centrifugal-blower $\sqrt{\mathbf{OR}}$ Figure 6.5.3	(1)
6.8	TURBOSUPERCHARGERDriven by exhaust gases √Mechanical driven √	(2)
6.9	1. Special shutdown procedure is required $$ 2. Special exhaust system needed $$ 3. Lag because of the exhaust gases to overcome the rotational inertia $$	(3) [40]
	TOTAL:	200