

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2023

MATHEMATICS P1 (DEAF)

MARKS: 150

TIME: 3 hours

This question paper has 10 pages with an information sheet.

INSTRUCTIONS AND INFORMATION

Read the instructions. Answer the questions.

- 1. This question paper has **TEN questions**. **Answer ALL** the **questions**.
- 2. Clearly **show ALL calculations**, **diagrams**, **graphs** that you used in your answers.
- You may use a prescribed calculator.
 Some questions will tell you NOT to use a calculator.
- 4. You will **NOT** always **get marks** for **answer only**.
- 5. **Round off** answers to **TWO decimal places**. **Some questions** will **tell** you **how** to **round off**.
- 6. Diagrams are NOT drawn to scale.Some questions will tell you to use the scale.
- 7. **Number** the **answers** the **same** as the numbers on the **question paper**.
- 8. An **information sheet** with **formulae** is at the **end** of the question paper.
- 9. Write **neatly**. Make sure your **work** is **easy** to **read**.

- $1.1.1 \qquad x^2 3x = 0 \tag{2}$
- $1.1.2 \quad x(3x+1) = 5 \tag{4}$

$$1.1.3 \quad 2x^2 - 5x + 3 < 0 \tag{3}$$

1.1.4
$$2\sqrt{x+2} = x-1$$
 (5)

1.2 Solve for x and y simultaneously(at the same time):

x + 3y = 2 and $x^2 - 3xy = 4$ (6)

1.3 **Given**:
$$(x-3)^2 = p^2 - 4$$

Determine the value(s) of p for which the roots will be non-real. (5) [25]

QUESTION 2

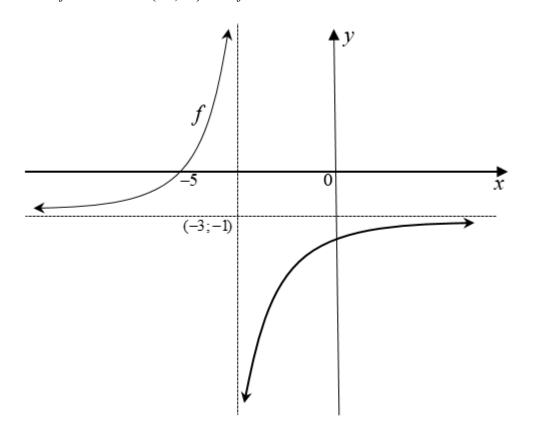
2.1 Do NOT use a calculator. Simplify fully:

$$\frac{2^{n+1} - 8.2^{n-3}}{2^{n-2}} \tag{4}$$

2.2 **Solve** for *x*:

2.2.1
$$\sqrt[x]{27} = 2187$$
 (4)

$$2.2.2 \qquad 4^x - 16 = 6.2^x \tag{5}$$


2.3 Do **NOT use** a calculator. Simplify.

Given that
$$x = \sqrt{3} - 2$$
, simplify $\frac{x^2 + 1}{x^2 - 5}$
(Give your answer in simplest surd form.) (5)
[18]

3.1	Given the linear number pattern: 17 ; 14 ; 11 ;; -247				
	3.1.1 Write down the fourth and fifth terms of the number pattern .	(2)			
	3.1.2 Determine the general term T_n , of the number pattern.	(2)			
	3.1.3 Calculate the value of T_{17} .	(2)			
	3.1.4 Determine the number of terms in the number pattern .	(2)			
3.2	.2In a linear number pattern, the first term is $2x + 11$. The second term is 2. The fourth term is $2x-4$. Calculate the value of x.(5)[13]				
QUESTION 4					
4.1	Given the quadratic number pattern: 94; 90; 82; 70;				
	4.1.1 Determine the next two terms of the number pattern .	(2)			
	4.1.2 Determine T_n , the general term of the number pattern .	(4)			
	4.1.3 Calculate TWO consecutive terms whose first difference is -136.	(4)			
4.2	A quadratic number pattern has a general term $T_n = an^2 + bn - 15$.				
	$T_2 - T_1 = 3$ and $T_3 - T_2 = 7$.				

[15]

The **diagram below** shows the **graph** of $f(x) = \frac{a}{x+p} + q$. The **asymptotes** of *f* **intersect** at (-3;-1) and *f* **cuts** the *x*-axis at x = -5.

5.1	Write down the values of p and q .	(2)
5.2	Determine the value of <i>a</i> .	(3)
5.3	Calculate the <i>y</i> -intercept of f .	(2)
5.4	Write down the domain of f .	(2)
5.5	Determine the line of symmetry of f with a negative gradient in the form $y = mx + c$.	(2)
5.6	For which values of x is $f(x) \ge 0$?	(2)
5.7	Describe the transformation of <i>f</i> to <i>g</i> , given that $g(x) = \frac{2}{x-1} + 1$	(4)

(4) [**17**]

Given: $f(x) = 2(3^x) + 1$

6.1	Write down the coordinates of the y-intercept of f .	(1)
6.2	Write down the equation of asymptote of f .	(2)
6.3	Draw a sketch of <i>f</i> . Show clearly the asymptote and intercept(s) with the axes .	(3)
6.4	Write down the range of h, if $h(x) = 2(3^{x+1}) - 5$.	(2) [8]

The **diagram** below shows the **graphs** of $f(x) = ax^2 + bx + c$ and g(x) = mx + q. D(-1;4) and F(1;6) are **points** of **intersection** of f and g. T and U are the x-intercepts of f. E(0;6) the y-intercept of f. S is the x-intercept of g.

VW is a straight line drawn parallel to the y-axis.

7.1	Write the equation of the axis of symmetry of f .	(1)
7.2	For which values of x is f decreasing?	(1)
7.3	Calculate the average gradient of f between D and E.	(2)
7.4	Determine the equation of g .	(3)
7.5	Show that $f(x) = -x^2 + x + 6$.	(4)
7.6	Calculate the length of SU.	(5)
7.7	Determine the values of x for which $f(x) - g(x) \le 0$.	(2)
7.8	Calculate the maximum length of VW.	(3) [21]

8.1		ulate the effective interest rate per annum(yearly) if an investment earns interest ate of 9,3% p.a. compounded(combined) monthly.					
8.2		ool buys a bus that costs R312 000 at the start of 2023.					
		verage inflation over the next 5 years is 6,91%. late the cost of replacing the school bus at the end of 5 years.	(3)				
	0		(0)				
8.3	Lwandi made an initial _(opening) deposit of R23 000 into an investment account that paid an interest rate of 9,25% compounded quarterly.						
	After 3 years since the start of his investment, he deposited R13 500 and the interest rate changed to 8,2% p.a., compounded(combined) monthly.						
	Exact	Exactly 5 years after his initial (opening) deposit, Lwandi withdrew R9 000.					
	8.3.1	Calculate the total value of the investment in Lwandi's account at the end of the 5 th year.	(5)				
	8.3.2	At the end of 8 years after the initial _(opening) deposit, Lwandi decided to withdraw and use the money.					
		Calculate the annual _(yearly) interest rate of the investment in the final 3 years if his final balance was R64 487,24 and the interest was compounded _(combined)					
		monthly.	(4)				

[15]

9.1 For any two events A and B, it is given that P(A) = 0,35 and P(A or B) = 0,61. Determine P(B) if:

011	A and B are mutually		
2.1.1	A and D are inutuan	CACIUSIVE.	

- 9.1.2 A and B are **independent**.
- 9.2 A cellphone distribution company investigated the number of defective_(faulty) phones that they obtain_(get) from two suppliers, Axis Phones and Direct Phones. They recorded their findings in a contingency table.

	Axis Phones	Direct Phones	Total
Defective	58	a	b
Not Defective	326	188	514
Total	384	С	600

- 9.2.1 **Determine** the values of a, b and c.
- 9.2.2 Calculate the probability that a cellphone chosen at random is supplied by Direct Phones. (1)
- 9.2.3 Calculate the probability that a cellphone chosen at random is Not Defective OR it is from Axis Phones and Defective. (3)

QUESTION 10

A bag contains(holds) x balls of which 5 are red and the rest are green. One ball is taken out of the bag randomly and it is not replaced. A second ball is taken out of the bag.

The probability of picking both green balls is $\frac{3}{11}$.

Show that the probability of picking both green balls can be represented by the equation: $4x^2 - 59x + 165 = 0$. [4]

TOTAL: 150

Copyright reserved

Please turn over

(3)(4)

(3)

[14]

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$
$T_n = a + (n-1)d$	$\mathbf{S}_n = \frac{n}{2} \left(2a + (n-1)d \right)$		
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - 1)}{r - 1} ;$	$r \neq 1$ $S_{\infty} =$	$\frac{a}{1-r}$; $-1 < r < 1$
$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$		$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$	
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f}{h}$	<u>(x)</u>		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$(r_1)^2$	$\mathbf{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	
$y = mx + c \qquad y - y_1$	$=m(x-x_1)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^{2}+(y-b)^{2}=r^{2}$			
In $\triangle ABC: \frac{a}{\sin A} = \frac{b}{\sin B}$	$=\frac{c}{\sin C} \qquad a^2 = b^2$	$c^2 + c^2 - 2bc.\cos A$	$area \Delta ABC = \frac{1}{2}ab.\sin C$
$\sin(\alpha+\beta)=\sin\alpha.\cos\beta$	$+\cos\alpha.\sin\beta$	$\sin(\alpha - \beta) = \sin \alpha . \cos \beta$	$\cos\beta - \cos\alpha . \sin\beta$
$\cos(\alpha+\beta)=\cos\alpha.\cos\beta$	$\beta - \sin \alpha . \sin \beta$	$\cos(\alpha - \beta) = \cos \alpha . \cos \alpha$	$\cos\beta + \sin\alpha . \sin\beta$
$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$	χ	$\sin 2\alpha = 2\sin \alpha . \cos \alpha$	¢
$\overline{x} = \frac{\sum x}{n}$		$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$	
$P(A) = \frac{n(A)}{n(S)}$		P(A or B) = P(A) + P(A)	(B) - P(A and B)

 $b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$

 $\hat{y} = a + bx$