

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2024

TECHNICAL MATHEMATICS P1 (DEAF)

MARKS: 150

TIME: 3 hours

This question paper has 15 pages, a 2-page formula sheet and 2 answer sheets.

Hosted by www.ecexams.co.za

INSTRUCTIONS AND INFORMATION

Read the instructions.

- 1. This question paper has NINE questions. Answer ALL the questions.
- 2. Show ALL calculations, diagrams, graphs, etc. that you have in your answers.
- 3. Answer QUESTION 4.1.4 and QUESTION 7.5 on the ANSWER SHEETS. Write your name and surname on the ANSWER SHEETS. Hand in the ANSWER SHEETS with your ANSWER BOOK.
- 4. You may use a prescribed calculator.Some questions will tell you NOT to use a calculator.
- 5. **Round off** answers to **TWO decimal places**. **Some questions** will **tell** you **how to round off**.
- 6. **Number** the **answers** the **same** as the numbers on the **question paper**.
- 7. **Diagrams** are **NOT** always drawn to **scale**. **Some questions** will **tell** you to **use the scale**.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly.

1.1 **Solve** for *x*:

$$1.1.1 \qquad 3x - \frac{x^2}{4} = 0 \tag{3}$$

1.1.2
$$x(x-3) = 13$$
 (round off to **TWO decimal places**) (4)

1.1.3
$$-2x^2 - x + 10 \le 0$$
 (Represent the solution set on a NUMBER LINE) (4)

1.2 Solve for x and y if:

$$y - x = 2 \quad \text{and} \quad \frac{x^2}{y} = 1 \tag{6}$$

1.3 **Diagram**: It shows a simple electric circuit with a light bulb. It is connected by a conducting wire to a small battery.

If $P = I^2 R$:

1.3.1	Make <i>I</i> the subject of the formula.	(2)
1.3.2	Determine the amount of current flowing through the circuit. The power of the light bulb is 5 Watts . The resistance of the conducting wire = 20 Ω .	(2)
1.3.3	Write the value of the current obtained _(found) in QUESTION 1.3.2 in Scientific Notation.	(1)
Deterr	nine the value of $A = 1010100_2 - 111011_2$ in decimal form.	(3) [25]

1.4

[8]

QUESTION 2

- 2.1 **Given**: $f(x) = 1 \pm \sqrt{\frac{x}{1 x^2}}$
 - 2.1.1 Write down the value of x for which f(x) = 1. (1)
 - 2.1.2 **Determine** the values of x for which the roots of f(x) will be undefined. (3)
- 2.2 Show that the roots of $g(x) = 9x^2 12kx + 4k^2$ will always be equal for all values of k. (4)

QUESTION 3

3.1 Simplify without using a calculator:

$$3.1.1 \quad \log_x x + \log_y 1 \tag{2}$$

$$\frac{3.1.2}{5\sqrt{2}} \qquad \frac{\sqrt{18} - \sqrt{128}}{5\sqrt{2}} \tag{3}$$

3.2 Solve for *x*. **Do not use** a calculator:

$$7^{x-1} - 7^x = -\frac{2}{9}$$
 HINT: $\log_7 27 = 1,69$ (7)

- 3.3 The Argand diagram represents the complex: $z = \sqrt{2}cis225^\circ$.
 - P(k;m) is a point on z.

3.3.1	Write down the length of the modulus of z.	(1)
3.3.2	Determine the length of <i>k</i> and <i>m</i> .	(2)
3.3.3	Hence or otherwise, write z in rectangular form.	(1)

- 3.4 Solve for x and y if x iy = 0.
 - [18]

(2)

4.1 Given the functions f and g defined by $f(x) = 3^x + 1$ and g(x) = 3x + 2.

4.1.1	Write down the asymptote of <i>f</i> .	(1)
4.1.2	Determine the coordinates of the <i>y</i> -intercept of <i>f</i> .	(2)
4.1.3	Determine the <i>x</i> and <i>y</i> -intercepts of <i>g</i> .	(3)
4.1.4	Sketch _(Draw) the graph of <i>f</i> and <i>g</i> on the ANSWER SHEET provided.	

- **Clearly show** all the **intercepts** with the **axes** and the **asymptote** of the **graph**. (6)
- 4.1.5 Write the coordinates of a point where the graph of g cuts the asymptote (2) of f.
- 4.1.6 **Determine** the values of x for which g(x) < asymptote of f. (2)
- 4.2 **Diagram:** It **represents** the **graphs** of the **functions defined** by:

$$h(x) = -\sqrt{4-x^2}$$
 and $k(x) = \frac{1}{x} + q$

- The asymptotes of k cut the graph of h at point A, its y-intercept.
- **Point B** is the *x*-intercept of *k*.

4.2.1 Write the *y*-intercept of *h*. (1)
4.2.2 Write the value of *q*. (1)
4.2.3 Determine the coordinates of B. (2)
4.2.4 Write down the domain of *k*. (1)

4.2.5 **Determine** the coordinates of two points on *k* that are closest to point A. (4)

4.3 The graph of the function defined by: $y = a(x-p)^2 + q$ is drawn below. x = -4 and B are the x-intercepts of f. A (-1; -5) is a turning point of f.

4.3.1	Write the equation of the axis of symmetry.	(1)
4.3.2	Determine the values of p and q .	(2)
4.3.3	Calculate the coordinates of B .	(2)

4.3.4 Determine the values of x for which $f(x) \times f'(x) > 0$. (3)

[33]

(2)

(5)

[14]

QUESTION 5

5.1 November 2023 Black Friday rush dropped the price of a R7 300 stamper by 11%.

- 5.1.2 **Determine** the **discounted price** of a **stamper**.
- 5.2 **Rusting** of **metal** is an **exponential**_(on-going) **process** if **not attended to**. The **car** below started **rusting in 2 cm² area** some **years ago**.

Determine the **number of years** it has taken to **rust 60 cm² area**. The **rate of rusting** is **5% per year**.

5.3 Ludwe invests R500 000 into an investment company.
It pays 7% per annum on simple interest.
At the end of the 5th year Ludwe deposits a further R77 000 into the investment account.

The interest rates changed to x% per annum, compounded monthly.

Determine the value of x% (interest rates), if at the end of 8 years Ludwe gets a total of **R880 000** from his investment account. (6)

QUESTION 6

- 6.1 Determine the derivative of f(x) = 3ax + 5 by using FIRST PRINCIPLES. (5)
- 6.2 **Determine:**

$$6.2.1 \qquad \frac{dy}{dx} \text{ if } xy = \sqrt{x} \tag{4}$$

$$6.2.2 \qquad D_x \left[\frac{3}{2x}\right] \tag{2}$$

6.3 Determine the **average gradient** between **points** A(3; 5) and B(-2; -1). (3)

[14]

Consider: f(x) = (x - 1) (x + 2) (x + 3)

7.1	Write the coordinates of the <i>x</i> -intercept of <i>f</i> .	(1)
7.2	Determine the <i>y</i> -intercept of <i>f</i> .	(1)
7.3	Determine the coordinates of the turning point of <i>f</i> .	(5)
7.4	Sketch _(Draw) the graph of f on the ANSWER SHEET. Clearly indicate _(show) your turning points. Show the intercepts with the axes.	(4)
7.5	Write the values of x for which $f(x) < 0$.	(2) [13]

Graph: Shows the path of a Boeing plane that is landing after experiencing hydraulics problems.

The process of its landing is observed from a certain height, in metres, over time, in seconds.

The landing path in terms of time (t) is: $h(t) = h_0(0,09)^t$.

h(t) = Final height of descend, in metres.

 h_0 = Initial height of observation, in metres.

t = Time of observation, in seconds.

8.1	Write the height of the plane, in metres, at the start of its landing observation.	(1)
8.2	Determine the height of the plane after 1 second.	(1)
8.3	Determine the time the plane took to drop to a height of 8,1 metres.	(4)
8.4	Calculate the plane's average speed of descend _(going down) between 1 000 m to 8,1 m.	(2)
8.5	If the maximum landing speed of a plane is 290 km/h, indicate _(show) whether this plane's landing speed in QUESTION 8.4 was a normal speed or not. (Show calculations.)	(2) [10]

- 9.1 **Determine** the integrals:
 - 9.1.1 $\int (-3x^2 + 2x^{-1}) dx$ (3)

9.1.2
$$\int (x-3) (x-5) dx$$
 (4)

9.2 The sketch_(drawing) shows the shaded area bounded by the function g defined by: $g(x) = x^3 + 3x^2 + \frac{5}{4}x - \frac{3}{2}$ and the axis between the points where x = -2 and x = -1,5 together with x = 0 and x = 0,5.

Determine the area of the shaded region of the graph of g bounded by the graph and the x-axis, between x = -2 and x = -1,5 and x = 0 and x = 0,5. (8)

[15]

TOTAL: 150

п

INFORMATION SHEET: TECHNICAL MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \qquad x = -\frac{b}{2a} \qquad y = \frac{4ac - b^{2}}{4a}$$

$$a^{x} = b \Leftrightarrow x = \log_{x} b, \quad a > 0, a \neq 1 \text{ and } b > 0$$

$$A = P(1 + ni) \qquad A = P(1 - ni) \qquad A = P(1 + i)^{n} \qquad A = P(1 - i)^{n}$$

$$i_{eff} = (1 + \frac{i}{m})^{n} - 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$j_{x} n dx = \frac{x^{n} + 1}{n + 1} + C, \quad n \neq -1 \qquad j_{k} x^{n} dx = k. \frac{x^{n} + 1}{n + 1} + C, \quad n \neq -1$$

$$j \frac{1}{x} dx = \ln x + C, \quad x > 0 \qquad j \frac{k}{x} dx = k. \ln x + C, \quad x > 0$$

$$j a^{x} dx = \frac{a^{x}}{\ln a} + C, \quad a > 0 \qquad j_{k} a^{nx} dx = k. \frac{a^{nx}}{n \ln a} + C, \quad a > 0$$

$$d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}} \qquad M\left(\frac{x_{2} + x_{1}}{2}; \frac{y_{2} + y_{1}}{2}\right)$$

$$y = nx + c \qquad y - y_{1} = m(x - x_{1}) \qquad m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \qquad \tan \theta = m$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

$$\ln \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^{2} = b^{2} + c^{2} - 2bc.\cos A$$

$$area of \ \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin^{2} \theta + \cos^{2} \theta = 1 \qquad 1 + \tan^{2} \theta = \sec^{2} \theta \qquad 1 + \cot^{2} \theta = \csc^{2} \theta$$

Copyright reserved

Please turn over

<u>(EC/JUNE2024)</u>	TECHNICAL MA	THEMATICS P1 (DEAF LEARNERS)	13
Angular velocity = ω =	$2 \pi n$	where $n = $ rotation frequency	
Angular velocity = ω =	360° n	where $n =$ rotation frequency	
Circumferential velocity Circumferential velocity	$= v = \pi D n$ $= v = \omega r$	where $D =$ diameter and $n =$ rotation frequency where $\omega =$ Angular velocity and $r =$ radius	
Arc length $s = r\theta$	where $r = radius$ and	nd θ = central angle in radians	

Area of a sector $= \frac{rs}{2}$ where r = radius, s = arc length

Area of a sector $=\frac{r^2 \theta}{2}$ where r = radius, $s = arc length and <math>\theta = central angle in radians$

 $4h^2 - 4dh + x^2 = 0$ where h = height of segment, d = diameter of circle and x = length of chord

$$A_{T} = a (m_{1} + m_{2} + m_{3} + ... + m_{n}) \text{ where } a = \text{equal parts, } m_{1} = \frac{o_{1} + o_{2}}{2}$$

and $n = \text{number of ordinates}$

OR

$$A_{T} = a \left(\frac{o_{1} + o_{n}}{2} + o_{2} + o_{3} + \dots + o_{n-1} \right)$$
 where $a = \text{equal parts}$, $o_{i} = i^{th}$ ordinate
and $n = \text{number of ordinates}$

ANSWER SHEET

Learner Name:

Class:

School Name:

QUESTION 4.1.4

ANSWER SHEET

Learner Name: Class:

School Name:

QUESTION 7.4